Exceptional service in the national interest

SAND2013-4691C

Variable length scale in a peridynamic body

Stewart Silling

Sandia National Laboratories

Pablo Seleson

University of Texas, Austin

SIAM Conference on Mathematical Aspects of Materials Science, Philadelphia, PA, June 12, 2013

Outline

- Peridynamics background
 - States, horizon
- Rescaling a material model (at a point)
- Variable length scale (over a region)
- Partial stress
- Local-nonlocal coupling examples

Peridynamics basics: The nature of internal forces

Standard theory

Stress tensor field (assumes contact forces and smooth deformation)

Peridynamics

Bond forces within small neighborhoods (allow discontinuity)

$$\rho\ddot{u}(x,t) = \nabla \cdot \sigma(x,t) + b(x,t)$$

Differentiation of contact forces

$$\rho \ddot{u}(x,t) = \int_{H_X} f(q,x)dV_q + b(x,t)$$

Summation over bond forces

Peridynamics basics: Deformation state and force state

The <u>deformation state</u> maps each bond to its deformed image.

$$Y[x]\langle q - x \rangle = y(q) - y(x)$$

The <u>force state</u> maps bonds to bond forces according to the constitutive model.

$$f(q, x) = T[x]\langle q - x \rangle - T[q]\langle x - q \rangle$$

• The <u>constitutive model</u> maps deformation states to force states.

Scaling of a material model at a point

- Let ϵ and δ be two horizons. Denote by ξ_{ϵ} and ξ_{δ} bonds within each family.
- Suppose we have a material model with horizon ϵ . Find a rescaled model with δ .
- Map the bonds (undeformed and deformed):

$$\frac{\xi_{\epsilon}}{\epsilon} = \frac{\xi_{\delta}}{\delta} \quad , \qquad \qquad \frac{Y_{\epsilon} \langle \xi_{\epsilon} \rangle}{\epsilon} = \frac{Y_{\delta} \langle \xi_{\delta} \rangle}{\delta}$$

Require

$$W_{\epsilon}(Y_{\epsilon}) = W_{\delta}(Y_{\delta})$$

 It follows from definition of Frechet derivative that the force state scales according to

Material with horizon δ

Rescaling works fine if the horizon is independent of position

• Example: uniform strain in a 1D homogeneous bar ($d=1,\ F=$ constant):

$$y = Fx$$

• If we scale the material model as derived above:

$$\epsilon^2 T_{\epsilon}(F) \langle \xi_{\epsilon} \rangle = \delta^2 T_{\delta}(F) \langle \xi_{\delta} \rangle$$

we are assured that the strain energy density and Young's modulus are independent of horizon.

Also the peridynamic equilibrium equation is satisfied.

Variable horizon: the problem

Same example: uniform strain in a 1D homogeneous bar

$$y = Fx$$

- Set $\epsilon = 1$, define $Z(F) = T_1(F)$.
- Let the horizon be given by $\delta(x)$. The scaled force state is

$$T[x]\langle \xi \rangle = \delta^{-2}(x)Z\left\langle \frac{\xi}{\delta(x)} \right\rangle$$

- From the previous discussion, we know W is independent of x.
- There's just one problem: this deformation isn't a minimizer of energy.
 - That is, the uniform strain deformation is not in equilibrium.

 $\delta(x)$ material

Origin of artifacts

• The peridynamic force density operator L(x) involves the force state not only at x but also the force states at all points within the horizon.

$$0 = L(x) + b, L(x) = \int_{-\infty}^{\infty} \{T_{\delta(x)}[x]\langle q - x \rangle - T_{\delta(q)}[q]\langle x - q \rangle\} dq$$

so simply scaling the material model at x is not sufficient.

Variable horizon

"Patch test" requirement for a coupling method

In a deformation of the form

$$y(x) = a + Fx$$

where H is a constant and the material model is of the form

$$T[x]\langle \xi \rangle = \delta^{-2}(x)Z\langle \xi / \delta(x) \rangle$$

where $\delta(x)$ is a prescribed function and Z is a state that depends only on F, we require

$$L(x) = 0$$
 for all x .

Peridynamic stress tensor

Define the 1D peridynamic stress tensor field* by

$$v(x) = \int_0^\infty \int_0^\infty \{T[x-y]\langle y+w\rangle - T[x+y]\langle -y-w\rangle\} \, dy \, dz$$

• Identity:

$$\frac{dv}{dx} = \int_{-\infty}^{\infty} \{T[x]\langle q - x \rangle - T[q]\langle x - q \rangle\} dq$$

• v(x) is the force per unit area carried by all the bonds that cross x.

*R. B. Lehoucq & SS, "Force flux and the peridynamic stress tensor," JMPS (2008)

Partial stress field

Under our assumption that

$$T[x]\langle \xi \rangle = \delta^{-2}(x)Z\langle \xi/\delta(x) \rangle$$

one computes directly that

$$v_0(x) := \int_{-\infty}^{\infty} \xi T[x] \langle \xi \rangle \, d\xi = \int_{-\infty}^{\infty} \xi Z \langle \xi \rangle \, d\xi$$

which is independent of x, so $dv_0/dx = 0$.

- v_0 is called the *partial stress* field.
- Clearly the internal force density field computed from

$$L_0(x) \coloneqq dv_0/dx$$

passes the "patch test."

This observation leads to the following idea...

Concept for coupling method

Idea: within a coupling region in which δ is changing, compute the internal force density from

$$L(x) = \frac{dv_0}{dx}(x), \qquad v_0(x) := \int_{-\infty}^{\infty} \xi T[x] \langle \xi \rangle d\xi$$

instead of the full PD nonlocal integral.

- Here, Tx is determined from whatever the deformation happens to be near x.
 - Z is no longer involved.
 - The material model has not changed from full PD, but the way of computing L
 has.

Local-nonlocal coupling idea

Continuum patch test results

- Full PD shows artifacts, as expected.
- PS shows no artifacts, as promised.

Continuum patch test with coupling (1)

No artifacts with PD-PS coupling (this was hoped for but not guaranteed).

Pulse propagation test problem

Does our coupling method work for dynamics as well as statics with variable horizon?

Pulse propagation test results

Movies of strain field evolution

Full PD everywhere Coupled PD-PS strain strain $\times 10^{-5}$ Nonlocal Local **Nonlocal** Local -2-2-4 -4-6 -6 -8 -8 -10-10-12-12-14-140 10 15 20 -15 -10 10 15 20 **Nonlocal** Local

Pulse propagation test results

Strain field: no artifacts appear in the coupled model the local-nonlocal transition.

Discussion

- The partial stress approach may provide a means for local-nonlocal coupling within the continuum equations.
 - Uses the underlying peridynamic material model but modifies the way internal force density is computed.
 - Expected to work in 2D & 3D, linear & nonlinear.
- PS is inconsistent from an energy minimization point of view.
 - Not suitable for a full-blown theory of mechanics and thermodynamics (as full PD is).
 - Not yet clear what implications this may have in practice.
 - We still need to use full PD for crack progression.

Extra slides

Purpose of peridynamics

 To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.

- Why do this? Develop a mathematical framework that help in modeling...
 - Discrete-to-continuum coupling
 - Cracking, including complex fracture patterns
 - Communication across length scales.

Figure 11.20 Pull-out: (a) schematic diagram; (b) fracture surface of 'Silceram' glass-ceramic reinforced with SiC fibres. (Courtesy H. S. Kim, P. S. Rogers and R. D. Rawlings.)

Peridynamic vs. local equations

State notation: $\underline{\mathsf{State}}\langle\mathsf{bond}\rangle=\mathsf{vector}$

Relation	Peridynamic theory	Standard theory
Kinematics	$\underline{\mathbf{Y}}\langle\mathbf{q}-\mathbf{x} angle=\mathbf{y}(\mathbf{q})-\mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = rac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$ ho\ddot{\mathbf{y}}(\mathbf{x}) = abla \cdot oldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q},\mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle, \qquad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}})$	$oldsymbol{\sigma} = \hat{oldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}} \langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle \ dV_{\mathbf{q}} = 0$	$oldsymbol{\sigma} = oldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}}$ (Fréchet derivative)	$oldsymbol{\sigma} = W_{\mathbf{F}}$ (tensor gradient)
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \cdot \dot{\underline{\mathbf{Y}}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}$$